The synergy between Ti species and g-C3N4 by doping and hybridization for the enhancement of photocatalytic H2 evolution.
نویسندگان
چکیده
A Ti species modified g-C3N4 photocatalyst was synthesized via an in situ hydrothermal route and the subsequent low-temperature calcination. The hydrothermal process results in not only the fabrication of TiO2/g-C3N4 heterojunctions, but also the coordination between Ti species and g-C3N4, which are verified by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical resistance test confirms that the coordination can improve the electrical conductivity of composites and can make the charge transfer easier. The photoluminescence (PL) and photocurrent measurements exhibit that the hybridization enhances the separation efficiency of photo-induced electrons and holes. As a result, the Ti species modified g-C3N4 photocatalysts exhibit much higher photocatalytic H2 evolution than the simple heterojunction of TiO2/g-C3N4 obtained via a microwave method and the mechanical mixture of TiO2 and g-C3N4 under visible-light irradiation. The coordination mechanism and synthesis route of TiO2/g-C3N4 heterojunctions are proposed.
منابع مشابه
Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets: a visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants.
Novel visible-light-driven Cd0.2Zn0.8S/g-C3N4 inorganic-organic composite photocatalysts were synthesized by a facile hydrothermal method. The prepared Cd0.2Zn0.8S/g-C3N4 composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron m...
متن کاملPt‐Decorated g‐C3N4/TiO2 Nanotube Arrays with Enhanced Visible‐Light Photocatalytic Activity for H2 Evolution
Aligned TiO2 nanotube layers (TiNTs) grown by self-organizing anodization of a Ti-substrate in a fluoride-based electrolyte were decorated with graphitic-phase C3N4 (g-C3N4) via a facile chemical vapor deposition approach. In comparison with classical TiO2 nanotubes (anatase), the g-C3N4/TiNTs show an onset of the photocurrent at 2.4 eV (vs. 3.2 eV for anatase) with a considerably high photocur...
متن کاملAg2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition.
Without Pt as cocatalyst, the photocatalytic hydrogen evolution activity of graphitic carbon nitride (g-C3N4) or even its composite is normally rather low (<1 μmol h(-1)). Exploring Pt-free cocatalysts to substitute precious Pt is of great importance in the photocatalytic field. In the present work, Ag2S-modified g-C3N4 (Ag2S/g-C3N4) composite photocatalysts were prepared via a simple precipita...
متن کاملPtNi Alloy Cocatalyst Modification of Eosin Y-Sensitized g-C3N4/GO Hybrid for Efficient Visible-Light Photocatalytic Hydrogen Evolution
An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times h...
متن کاملCodeposition of Fe3O4 Nanoparticles Sandwiched Between g-C3N4 and TiO2 Nanosheets: Structure, Characterization and High Photocatalytic Activity for Efficiently Degradation of Dye Pollutants
Novel ternary nanocomposite photocatalysts based on g-C3N4/Fe3O4/TiO2 nanosheet were synthesized using simple solid combustion, hydrothermal and wetness impregnation methods. The g-C3N4 nanosheet (2D)/ Fe3O4/ TiO2 nanosheet (2D) triad-interface nanocomposite arranged in the form of Fe3O4 nanoparticle was sandwiched and well dispersed on the surface between g-C3N4 and TiO2 nanosheets. The synthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 44 40 شماره
صفحات -
تاریخ انتشار 2015